metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.34D28, C8⋊Dic7⋊6C2, (C2×C28).40D4, (C2×C4).29D28, C22⋊C8.6D7, (C2×C8).107D14, C14.6(C2×SD16), C28.44D4⋊9C2, (C2×C14).13SD16, (C22×C4).75D14, (C22×C14).48D4, C28.279(C4○D4), (C2×C28).738C23, (C2×C56).118C22, C28.48D4.2C2, C22.101(C2×D28), C22.8(C56⋊C2), C14.7(C8.C22), C7⋊1(C23.47D4), C4.103(D4⋊2D7), C2.10(C8.D14), C4⋊Dic7.268C22, (C22×C28).48C22, (C2×Dic14).10C22, C14.14(C22.D4), C2.10(C22.D28), C2.9(C2×C56⋊C2), (C7×C22⋊C8).8C2, (C2×C14).121(C2×D4), (C2×C4⋊Dic7).11C2, (C2×C4).683(C22×D7), SmallGroup(448,255)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C28 — C2×C28 — C4⋊Dic7 — C2×C4⋊Dic7 — C23.34D28 |
Generators and relations for C23.34D28
G = < a,b,c,d,e | a2=b2=c2=1, d28=c, e2=cb=bc, dad-1=eae-1=ab=ba, ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d27 >
Subgroups: 508 in 104 conjugacy classes, 43 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C8, C2×C4, C2×C4, Q8, C23, C14, C14, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic7, C28, C28, C2×C14, C2×C14, C2×C14, C22⋊C8, Q8⋊C4, C4.Q8, C2×C4⋊C4, C22⋊Q8, C56, Dic14, C2×Dic7, C2×C28, C2×C28, C22×C14, C23.47D4, Dic7⋊C4, C4⋊Dic7, C4⋊Dic7, C4⋊Dic7, C23.D7, C2×C56, C2×Dic14, C22×Dic7, C22×C28, C28.44D4, C8⋊Dic7, C7×C22⋊C8, C28.48D4, C2×C4⋊Dic7, C23.34D28
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, C4○D4, D14, C22.D4, C2×SD16, C8.C22, D28, C22×D7, C23.47D4, C56⋊C2, C2×D28, D4⋊2D7, C22.D28, C2×C56⋊C2, C8.D14, C23.34D28
(1 29)(2 188)(3 31)(4 190)(5 33)(6 192)(7 35)(8 194)(9 37)(10 196)(11 39)(12 198)(13 41)(14 200)(15 43)(16 202)(17 45)(18 204)(19 47)(20 206)(21 49)(22 208)(23 51)(24 210)(25 53)(26 212)(27 55)(28 214)(30 216)(32 218)(34 220)(36 222)(38 224)(40 170)(42 172)(44 174)(46 176)(48 178)(50 180)(52 182)(54 184)(56 186)(57 85)(58 137)(59 87)(60 139)(61 89)(62 141)(63 91)(64 143)(65 93)(66 145)(67 95)(68 147)(69 97)(70 149)(71 99)(72 151)(73 101)(74 153)(75 103)(76 155)(77 105)(78 157)(79 107)(80 159)(81 109)(82 161)(83 111)(84 163)(86 165)(88 167)(90 113)(92 115)(94 117)(96 119)(98 121)(100 123)(102 125)(104 127)(106 129)(108 131)(110 133)(112 135)(114 142)(116 144)(118 146)(120 148)(122 150)(124 152)(126 154)(128 156)(130 158)(132 160)(134 162)(136 164)(138 166)(140 168)(169 197)(171 199)(173 201)(175 203)(177 205)(179 207)(181 209)(183 211)(185 213)(187 215)(189 217)(191 219)(193 221)(195 223)
(1 215)(2 216)(3 217)(4 218)(5 219)(6 220)(7 221)(8 222)(9 223)(10 224)(11 169)(12 170)(13 171)(14 172)(15 173)(16 174)(17 175)(18 176)(19 177)(20 178)(21 179)(22 180)(23 181)(24 182)(25 183)(26 184)(27 185)(28 186)(29 187)(30 188)(31 189)(32 190)(33 191)(34 192)(35 193)(36 194)(37 195)(38 196)(39 197)(40 198)(41 199)(42 200)(43 201)(44 202)(45 203)(46 204)(47 205)(48 206)(49 207)(50 208)(51 209)(52 210)(53 211)(54 212)(55 213)(56 214)(57 164)(58 165)(59 166)(60 167)(61 168)(62 113)(63 114)(64 115)(65 116)(66 117)(67 118)(68 119)(69 120)(70 121)(71 122)(72 123)(73 124)(74 125)(75 126)(76 127)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 134)(84 135)(85 136)(86 137)(87 138)(88 139)(89 140)(90 141)(91 142)(92 143)(93 144)(94 145)(95 146)(96 147)(97 148)(98 149)(99 150)(100 151)(101 152)(102 153)(103 154)(104 155)(105 156)(106 157)(107 158)(108 159)(109 160)(110 161)(111 162)(112 163)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)(113 141)(114 142)(115 143)(116 144)(117 145)(118 146)(119 147)(120 148)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 161)(134 162)(135 163)(136 164)(137 165)(138 166)(139 167)(140 168)(169 197)(170 198)(171 199)(172 200)(173 201)(174 202)(175 203)(176 204)(177 205)(178 206)(179 207)(180 208)(181 209)(182 210)(183 211)(184 212)(185 213)(186 214)(187 215)(188 216)(189 217)(190 218)(191 219)(192 220)(193 221)(194 222)(195 223)(196 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 62 187 141)(2 89 188 168)(3 60 189 139)(4 87 190 166)(5 58 191 137)(6 85 192 164)(7 112 193 135)(8 83 194 162)(9 110 195 133)(10 81 196 160)(11 108 197 131)(12 79 198 158)(13 106 199 129)(14 77 200 156)(15 104 201 127)(16 75 202 154)(17 102 203 125)(18 73 204 152)(19 100 205 123)(20 71 206 150)(21 98 207 121)(22 69 208 148)(23 96 209 119)(24 67 210 146)(25 94 211 117)(26 65 212 144)(27 92 213 115)(28 63 214 142)(29 90 215 113)(30 61 216 140)(31 88 217 167)(32 59 218 138)(33 86 219 165)(34 57 220 136)(35 84 221 163)(36 111 222 134)(37 82 223 161)(38 109 224 132)(39 80 169 159)(40 107 170 130)(41 78 171 157)(42 105 172 128)(43 76 173 155)(44 103 174 126)(45 74 175 153)(46 101 176 124)(47 72 177 151)(48 99 178 122)(49 70 179 149)(50 97 180 120)(51 68 181 147)(52 95 182 118)(53 66 183 145)(54 93 184 116)(55 64 185 143)(56 91 186 114)
G:=sub<Sym(224)| (1,29)(2,188)(3,31)(4,190)(5,33)(6,192)(7,35)(8,194)(9,37)(10,196)(11,39)(12,198)(13,41)(14,200)(15,43)(16,202)(17,45)(18,204)(19,47)(20,206)(21,49)(22,208)(23,51)(24,210)(25,53)(26,212)(27,55)(28,214)(30,216)(32,218)(34,220)(36,222)(38,224)(40,170)(42,172)(44,174)(46,176)(48,178)(50,180)(52,182)(54,184)(56,186)(57,85)(58,137)(59,87)(60,139)(61,89)(62,141)(63,91)(64,143)(65,93)(66,145)(67,95)(68,147)(69,97)(70,149)(71,99)(72,151)(73,101)(74,153)(75,103)(76,155)(77,105)(78,157)(79,107)(80,159)(81,109)(82,161)(83,111)(84,163)(86,165)(88,167)(90,113)(92,115)(94,117)(96,119)(98,121)(100,123)(102,125)(104,127)(106,129)(108,131)(110,133)(112,135)(114,142)(116,144)(118,146)(120,148)(122,150)(124,152)(126,154)(128,156)(130,158)(132,160)(134,162)(136,164)(138,166)(140,168)(169,197)(171,199)(173,201)(175,203)(177,205)(179,207)(181,209)(183,211)(185,213)(187,215)(189,217)(191,219)(193,221)(195,223), (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,169)(12,170)(13,171)(14,172)(15,173)(16,174)(17,175)(18,176)(19,177)(20,178)(21,179)(22,180)(23,181)(24,182)(25,183)(26,184)(27,185)(28,186)(29,187)(30,188)(31,189)(32,190)(33,191)(34,192)(35,193)(36,194)(37,195)(38,196)(39,197)(40,198)(41,199)(42,200)(43,201)(44,202)(45,203)(46,204)(47,205)(48,206)(49,207)(50,208)(51,209)(52,210)(53,211)(54,212)(55,213)(56,214)(57,164)(58,165)(59,166)(60,167)(61,168)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,137)(87,138)(88,139)(89,140)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,152)(102,153)(103,154)(104,155)(105,156)(106,157)(107,158)(108,159)(109,160)(110,161)(111,162)(112,163), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,62,187,141)(2,89,188,168)(3,60,189,139)(4,87,190,166)(5,58,191,137)(6,85,192,164)(7,112,193,135)(8,83,194,162)(9,110,195,133)(10,81,196,160)(11,108,197,131)(12,79,198,158)(13,106,199,129)(14,77,200,156)(15,104,201,127)(16,75,202,154)(17,102,203,125)(18,73,204,152)(19,100,205,123)(20,71,206,150)(21,98,207,121)(22,69,208,148)(23,96,209,119)(24,67,210,146)(25,94,211,117)(26,65,212,144)(27,92,213,115)(28,63,214,142)(29,90,215,113)(30,61,216,140)(31,88,217,167)(32,59,218,138)(33,86,219,165)(34,57,220,136)(35,84,221,163)(36,111,222,134)(37,82,223,161)(38,109,224,132)(39,80,169,159)(40,107,170,130)(41,78,171,157)(42,105,172,128)(43,76,173,155)(44,103,174,126)(45,74,175,153)(46,101,176,124)(47,72,177,151)(48,99,178,122)(49,70,179,149)(50,97,180,120)(51,68,181,147)(52,95,182,118)(53,66,183,145)(54,93,184,116)(55,64,185,143)(56,91,186,114)>;
G:=Group( (1,29)(2,188)(3,31)(4,190)(5,33)(6,192)(7,35)(8,194)(9,37)(10,196)(11,39)(12,198)(13,41)(14,200)(15,43)(16,202)(17,45)(18,204)(19,47)(20,206)(21,49)(22,208)(23,51)(24,210)(25,53)(26,212)(27,55)(28,214)(30,216)(32,218)(34,220)(36,222)(38,224)(40,170)(42,172)(44,174)(46,176)(48,178)(50,180)(52,182)(54,184)(56,186)(57,85)(58,137)(59,87)(60,139)(61,89)(62,141)(63,91)(64,143)(65,93)(66,145)(67,95)(68,147)(69,97)(70,149)(71,99)(72,151)(73,101)(74,153)(75,103)(76,155)(77,105)(78,157)(79,107)(80,159)(81,109)(82,161)(83,111)(84,163)(86,165)(88,167)(90,113)(92,115)(94,117)(96,119)(98,121)(100,123)(102,125)(104,127)(106,129)(108,131)(110,133)(112,135)(114,142)(116,144)(118,146)(120,148)(122,150)(124,152)(126,154)(128,156)(130,158)(132,160)(134,162)(136,164)(138,166)(140,168)(169,197)(171,199)(173,201)(175,203)(177,205)(179,207)(181,209)(183,211)(185,213)(187,215)(189,217)(191,219)(193,221)(195,223), (1,215)(2,216)(3,217)(4,218)(5,219)(6,220)(7,221)(8,222)(9,223)(10,224)(11,169)(12,170)(13,171)(14,172)(15,173)(16,174)(17,175)(18,176)(19,177)(20,178)(21,179)(22,180)(23,181)(24,182)(25,183)(26,184)(27,185)(28,186)(29,187)(30,188)(31,189)(32,190)(33,191)(34,192)(35,193)(36,194)(37,195)(38,196)(39,197)(40,198)(41,199)(42,200)(43,201)(44,202)(45,203)(46,204)(47,205)(48,206)(49,207)(50,208)(51,209)(52,210)(53,211)(54,212)(55,213)(56,214)(57,164)(58,165)(59,166)(60,167)(61,168)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135)(85,136)(86,137)(87,138)(88,139)(89,140)(90,141)(91,142)(92,143)(93,144)(94,145)(95,146)(96,147)(97,148)(98,149)(99,150)(100,151)(101,152)(102,153)(103,154)(104,155)(105,156)(106,157)(107,158)(108,159)(109,160)(110,161)(111,162)(112,163), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,62,187,141)(2,89,188,168)(3,60,189,139)(4,87,190,166)(5,58,191,137)(6,85,192,164)(7,112,193,135)(8,83,194,162)(9,110,195,133)(10,81,196,160)(11,108,197,131)(12,79,198,158)(13,106,199,129)(14,77,200,156)(15,104,201,127)(16,75,202,154)(17,102,203,125)(18,73,204,152)(19,100,205,123)(20,71,206,150)(21,98,207,121)(22,69,208,148)(23,96,209,119)(24,67,210,146)(25,94,211,117)(26,65,212,144)(27,92,213,115)(28,63,214,142)(29,90,215,113)(30,61,216,140)(31,88,217,167)(32,59,218,138)(33,86,219,165)(34,57,220,136)(35,84,221,163)(36,111,222,134)(37,82,223,161)(38,109,224,132)(39,80,169,159)(40,107,170,130)(41,78,171,157)(42,105,172,128)(43,76,173,155)(44,103,174,126)(45,74,175,153)(46,101,176,124)(47,72,177,151)(48,99,178,122)(49,70,179,149)(50,97,180,120)(51,68,181,147)(52,95,182,118)(53,66,183,145)(54,93,184,116)(55,64,185,143)(56,91,186,114) );
G=PermutationGroup([[(1,29),(2,188),(3,31),(4,190),(5,33),(6,192),(7,35),(8,194),(9,37),(10,196),(11,39),(12,198),(13,41),(14,200),(15,43),(16,202),(17,45),(18,204),(19,47),(20,206),(21,49),(22,208),(23,51),(24,210),(25,53),(26,212),(27,55),(28,214),(30,216),(32,218),(34,220),(36,222),(38,224),(40,170),(42,172),(44,174),(46,176),(48,178),(50,180),(52,182),(54,184),(56,186),(57,85),(58,137),(59,87),(60,139),(61,89),(62,141),(63,91),(64,143),(65,93),(66,145),(67,95),(68,147),(69,97),(70,149),(71,99),(72,151),(73,101),(74,153),(75,103),(76,155),(77,105),(78,157),(79,107),(80,159),(81,109),(82,161),(83,111),(84,163),(86,165),(88,167),(90,113),(92,115),(94,117),(96,119),(98,121),(100,123),(102,125),(104,127),(106,129),(108,131),(110,133),(112,135),(114,142),(116,144),(118,146),(120,148),(122,150),(124,152),(126,154),(128,156),(130,158),(132,160),(134,162),(136,164),(138,166),(140,168),(169,197),(171,199),(173,201),(175,203),(177,205),(179,207),(181,209),(183,211),(185,213),(187,215),(189,217),(191,219),(193,221),(195,223)], [(1,215),(2,216),(3,217),(4,218),(5,219),(6,220),(7,221),(8,222),(9,223),(10,224),(11,169),(12,170),(13,171),(14,172),(15,173),(16,174),(17,175),(18,176),(19,177),(20,178),(21,179),(22,180),(23,181),(24,182),(25,183),(26,184),(27,185),(28,186),(29,187),(30,188),(31,189),(32,190),(33,191),(34,192),(35,193),(36,194),(37,195),(38,196),(39,197),(40,198),(41,199),(42,200),(43,201),(44,202),(45,203),(46,204),(47,205),(48,206),(49,207),(50,208),(51,209),(52,210),(53,211),(54,212),(55,213),(56,214),(57,164),(58,165),(59,166),(60,167),(61,168),(62,113),(63,114),(64,115),(65,116),(66,117),(67,118),(68,119),(69,120),(70,121),(71,122),(72,123),(73,124),(74,125),(75,126),(76,127),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,134),(84,135),(85,136),(86,137),(87,138),(88,139),(89,140),(90,141),(91,142),(92,143),(93,144),(94,145),(95,146),(96,147),(97,148),(98,149),(99,150),(100,151),(101,152),(102,153),(103,154),(104,155),(105,156),(106,157),(107,158),(108,159),(109,160),(110,161),(111,162),(112,163)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112),(113,141),(114,142),(115,143),(116,144),(117,145),(118,146),(119,147),(120,148),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,161),(134,162),(135,163),(136,164),(137,165),(138,166),(139,167),(140,168),(169,197),(170,198),(171,199),(172,200),(173,201),(174,202),(175,203),(176,204),(177,205),(178,206),(179,207),(180,208),(181,209),(182,210),(183,211),(184,212),(185,213),(186,214),(187,215),(188,216),(189,217),(190,218),(191,219),(192,220),(193,221),(194,222),(195,223),(196,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,62,187,141),(2,89,188,168),(3,60,189,139),(4,87,190,166),(5,58,191,137),(6,85,192,164),(7,112,193,135),(8,83,194,162),(9,110,195,133),(10,81,196,160),(11,108,197,131),(12,79,198,158),(13,106,199,129),(14,77,200,156),(15,104,201,127),(16,75,202,154),(17,102,203,125),(18,73,204,152),(19,100,205,123),(20,71,206,150),(21,98,207,121),(22,69,208,148),(23,96,209,119),(24,67,210,146),(25,94,211,117),(26,65,212,144),(27,92,213,115),(28,63,214,142),(29,90,215,113),(30,61,216,140),(31,88,217,167),(32,59,218,138),(33,86,219,165),(34,57,220,136),(35,84,221,163),(36,111,222,134),(37,82,223,161),(38,109,224,132),(39,80,169,159),(40,107,170,130),(41,78,171,157),(42,105,172,128),(43,76,173,155),(44,103,174,126),(45,74,175,153),(46,101,176,124),(47,72,177,151),(48,99,178,122),(49,70,179,149),(50,97,180,120),(51,68,181,147),(52,95,182,118),(53,66,183,145),(54,93,184,116),(55,64,185,143),(56,91,186,114)]])
79 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 14J | ··· | 14O | 28A | ··· | 28L | 28M | ··· | 28R | 56A | ··· | 56X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 28 | 28 | 28 | 28 | 56 | 56 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
79 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D7 | C4○D4 | SD16 | D14 | D14 | D28 | D28 | C56⋊C2 | C8.C22 | D4⋊2D7 | C8.D14 |
kernel | C23.34D28 | C28.44D4 | C8⋊Dic7 | C7×C22⋊C8 | C28.48D4 | C2×C4⋊Dic7 | C2×C28 | C22×C14 | C22⋊C8 | C28 | C2×C14 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 | C14 | C4 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 4 | 4 | 6 | 3 | 6 | 6 | 24 | 1 | 6 | 6 |
Matrix representation of C23.34D28 ►in GL6(𝔽113)
112 | 0 | 0 | 0 | 0 | 0 |
0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 87 | 112 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 |
0 | 0 | 0 | 0 | 0 | 112 |
112 | 0 | 0 | 0 | 0 | 0 |
0 | 112 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
3 | 49 | 0 | 0 | 0 | 0 |
66 | 23 | 0 | 0 | 0 | 0 |
0 | 0 | 89 | 104 | 0 | 0 |
0 | 0 | 99 | 103 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 87 |
0 | 0 | 0 | 0 | 87 | 112 |
10 | 25 | 0 | 0 | 0 | 0 |
5 | 103 | 0 | 0 | 0 | 0 |
0 | 0 | 106 | 72 | 0 | 0 |
0 | 0 | 37 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 98 | 51 |
0 | 0 | 0 | 0 | 0 | 15 |
G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,87,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,66,0,0,0,0,49,23,0,0,0,0,0,0,89,99,0,0,0,0,104,103,0,0,0,0,0,0,1,87,0,0,0,0,87,112],[10,5,0,0,0,0,25,103,0,0,0,0,0,0,106,37,0,0,0,0,72,7,0,0,0,0,0,0,98,0,0,0,0,0,51,15] >;
C23.34D28 in GAP, Magma, Sage, TeX
C_2^3._{34}D_{28}
% in TeX
G:=Group("C2^3.34D28");
// GroupNames label
G:=SmallGroup(448,255);
// by ID
G=gap.SmallGroup(448,255);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,112,254,219,58,1123,136,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^28=c,e^2=c*b=b*c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^27>;
// generators/relations